We found 20 results that contain "post ics"
Posted on: #iteachmsu
DISCIPLINARY CONTENT
Full blood counts -- New
Department of Haematology
Notes
Full blood counts are performed on automated equipment and provide haemoglobin concentration, red cell indices, white cell count (with a differential count) and platelet count.
The presence of abnormal white cell and red cell morphology is flagged by the analysers.
Blood films may be inspected to confirm and interpret abnormalities identified by the cell counter, or to look for certain specific haematological abnormalities.
Grossly abnormal FBC results and abnormal blood films will be phoned through to the requestor.
There is no need to request a blood film to obtain a differential white count. It is, however, important that clinical details are provided to allow the laboratory to decide whether a blood film, in addition to the automated analysis, is required.
Under some circumstances a differential is not routinely performed, e.g. pre-op, post-op, antenatal and postnatal requests.
Full Blood Counts are performed at CGH and GRH
See also: Reticulocyte Count
The FBC comprises the following tests
Standard
Haemoglobin (Hb)
White Blood Count (WBC)
Platelet Count (Plt)
Red Cell Count (RBC)
Haematocrit (HCT)
Mean Cell Volume - Red cell (MCV)
Mean Cell Haemoglobin (MCH)
Differential White Cell Count (where applicable)
Neutrophils
Lymphocytes
Monocytes
Eosinophils
Basophils
And if appropriate
Blood Film
Sample Requirements
2ml or 4ml EDTA sample or a Paediatric 1ml EDTA sample.
Sample Storage and Retention
Pre analysis storage: do not store, send to laboratory within 4 hours.
Sample retention by lab: EDTA samples are retained for a minimum of 48 hours at 2-10°C
Transport of samples may affect sample viability, i.e. FBC results will degenerate if exposed to high temperatures, such as prolonged transportation in a hot car in summer.
This test can be added on to a previous request as long as there is sufficient sample remaining and the sample is less than 24 hours old.
Turnaround Times
Clinical emergency: 30 mins
Other urgent sample: 60 mins
Routine: within 2 hours
Reference Ranges
If references ranges are required for paediatric patients please contact the laboratory for these.
Parameter Patient Reference Range Units Haemoglobin Adult Male 130 - 180 g/L Adult Female 115 - 165 g/L Red Cell Count Adult Male 4.50 - 6.50 x10^12/L Adult Female 3.80 - 5.80 x10^12/L Haematocrit Adult Male 0.40 - 0.54 L/L Adult Female 0.37 - 0.47 L/L Mean Cell Volume Adult 80 - 100 fL Mean Cell Haemoglobin Adult 27 - 32 pg White Cell Count Adult 3.6 - 11.0 x10^9/L Neutrophils Adult 1.8 - 7.5 x10^9/L Lymphocytes Adult 1.0 - 4.0 x10^9/L Monocytes Adult 0.2 - 0.8 x10^9/L Eosinophils Adult 0.1 - 0.4 x10^9/L Basophils Adult 0.02 - 0.10 x10^9/L Platelet Count Adult 140 - 400 x10^9/L
Notes
Full blood counts are performed on automated equipment and provide haemoglobin concentration, red cell indices, white cell count (with a differential count) and platelet count.
The presence of abnormal white cell and red cell morphology is flagged by the analysers.
Blood films may be inspected to confirm and interpret abnormalities identified by the cell counter, or to look for certain specific haematological abnormalities.
Grossly abnormal FBC results and abnormal blood films will be phoned through to the requestor.
There is no need to request a blood film to obtain a differential white count. It is, however, important that clinical details are provided to allow the laboratory to decide whether a blood film, in addition to the automated analysis, is required.
Under some circumstances a differential is not routinely performed, e.g. pre-op, post-op, antenatal and postnatal requests.
Full Blood Counts are performed at CGH and GRH
See also: Reticulocyte Count
The FBC comprises the following tests
Standard
Haemoglobin (Hb)
White Blood Count (WBC)
Platelet Count (Plt)
Red Cell Count (RBC)
Haematocrit (HCT)
Mean Cell Volume - Red cell (MCV)
Mean Cell Haemoglobin (MCH)
Differential White Cell Count (where applicable)
Neutrophils
Lymphocytes
Monocytes
Eosinophils
Basophils
And if appropriate
Blood Film
Sample Requirements
2ml or 4ml EDTA sample or a Paediatric 1ml EDTA sample.
Sample Storage and Retention
Pre analysis storage: do not store, send to laboratory within 4 hours.
Sample retention by lab: EDTA samples are retained for a minimum of 48 hours at 2-10°C
Transport of samples may affect sample viability, i.e. FBC results will degenerate if exposed to high temperatures, such as prolonged transportation in a hot car in summer.
This test can be added on to a previous request as long as there is sufficient sample remaining and the sample is less than 24 hours old.
Turnaround Times
Clinical emergency: 30 mins
Other urgent sample: 60 mins
Routine: within 2 hours
Reference Ranges
If references ranges are required for paediatric patients please contact the laboratory for these.
Parameter Patient Reference Range Units Haemoglobin Adult Male 130 - 180 g/L Adult Female 115 - 165 g/L Red Cell Count Adult Male 4.50 - 6.50 x10^12/L Adult Female 3.80 - 5.80 x10^12/L Haematocrit Adult Male 0.40 - 0.54 L/L Adult Female 0.37 - 0.47 L/L Mean Cell Volume Adult 80 - 100 fL Mean Cell Haemoglobin Adult 27 - 32 pg White Cell Count Adult 3.6 - 11.0 x10^9/L Neutrophils Adult 1.8 - 7.5 x10^9/L Lymphocytes Adult 1.0 - 4.0 x10^9/L Monocytes Adult 0.2 - 0.8 x10^9/L Eosinophils Adult 0.1 - 0.4 x10^9/L Basophils Adult 0.02 - 0.10 x10^9/L Platelet Count Adult 140 - 400 x10^9/L
Authored by:
Vijaya

Posted on: #iteachmsu

Full blood counts -- New
Department of Haematology
Notes
Full blood counts are pe...
Notes
Full blood counts are pe...
Authored by:
DISCIPLINARY CONTENT
Tuesday, Sep 26, 2023
Posted on: #iteachmsu
Department of Haematology
Department of Haematology
Notes
Full blood counts are performed on automated equipment and provide haemoglobin concentration, red cell indices, white cell count (with a differential count) and platelet count.
The presence of abnormal white cell and red cell morphology is flagged by the analysers.
Blood films may be inspected to confirm and interpret abnormalities identified by the cell counter, or to look for certain specific haematological abnormalities.
Grossly abnormal FBC results and abnormal blood films will be phoned through to the requestor.
There is no need to request a blood film to obtain a differential white count. It is, however, important that clinical details are provided to allow the laboratory to decide whether a blood film, in addition to the automated analysis, is required.
Under some circumstances a differential is not routinely performed, e.g. pre-op, post-op, antenatal and postnatal requests.
Full Blood Counts are performed at CGH and GRH
See also: Reticulocyte Count
The FBC comprises the following tests
Standard
Haemoglobin (Hb)
White Blood Count (WBC)
Platelet Count (Plt)
Red Cell Count (RBC)
Haematocrit (HCT)
Mean Cell Volume - Red cell (MCV)
Mean Cell Haemoglobin (MCH)
Differential White Cell Count (where applicable)
Neutrophils
Lymphocytes
Monocytes
Eosinophils
Basophils
And if appropriate
Blood Film
Sample Requirements
2ml or 4ml EDTA sample or a Paediatric 1ml EDTA sample.
Sample Storage and Retention
Pre analysis storage: do not store, send to laboratory within 4 hours.
Sample retention by lab: EDTA samples are retained for a minimum of 48 hours at 2-10°C
Transport of samples may affect sample viability, i.e. FBC results will degenerate if exposed to high temperatures, such as prolonged transportation in a hot car in summer.
This test can be added on to a previous request as long as there is sufficient sample remaining and the sample is less than 24 hours old.
Turnaround Times
Clinical emergency: 30 mins
Other urgent sample: 60 mins
Routine: within 2 hours
Reference Ranges
If references ranges are required for paediatric patients please contact the laboratory for these.
Parameter Patient Reference Range Units Haemoglobin Adult Male 130 - 180 g/L Adult Female 115 - 165 g/L Red Cell Count Adult Male 4.50 - 6.50 x10^12/L Adult Female 3.80 - 5.80 x10^12/L Haematocrit Adult Male 0.40 - 0.54 L/L Adult Female 0.37 - 0.47 L/L Mean Cell Volume Adult 80 - 100 fL Mean Cell Haemoglobin Adult 27 - 32 pg White Cell Count Adult 3.6 - 11.0 x10^9/L Neutrophils Adult 1.8 - 7.5 x10^9/L Lymphocytes Adult 1.0 - 4.0 x10^9/L Monocytes Adult 0.2 - 0.8 x10^9/L Eosinophils Adult 0.1 - 0.4 x10^9/L Basophils Adult 0.02 - 0.10 x10^9/L Platelet Count Adult 140 - 400 x10^9/L
Notes
Full blood counts are performed on automated equipment and provide haemoglobin concentration, red cell indices, white cell count (with a differential count) and platelet count.
The presence of abnormal white cell and red cell morphology is flagged by the analysers.
Blood films may be inspected to confirm and interpret abnormalities identified by the cell counter, or to look for certain specific haematological abnormalities.
Grossly abnormal FBC results and abnormal blood films will be phoned through to the requestor.
There is no need to request a blood film to obtain a differential white count. It is, however, important that clinical details are provided to allow the laboratory to decide whether a blood film, in addition to the automated analysis, is required.
Under some circumstances a differential is not routinely performed, e.g. pre-op, post-op, antenatal and postnatal requests.
Full Blood Counts are performed at CGH and GRH
See also: Reticulocyte Count
The FBC comprises the following tests
Standard
Haemoglobin (Hb)
White Blood Count (WBC)
Platelet Count (Plt)
Red Cell Count (RBC)
Haematocrit (HCT)
Mean Cell Volume - Red cell (MCV)
Mean Cell Haemoglobin (MCH)
Differential White Cell Count (where applicable)
Neutrophils
Lymphocytes
Monocytes
Eosinophils
Basophils
And if appropriate
Blood Film
Sample Requirements
2ml or 4ml EDTA sample or a Paediatric 1ml EDTA sample.
Sample Storage and Retention
Pre analysis storage: do not store, send to laboratory within 4 hours.
Sample retention by lab: EDTA samples are retained for a minimum of 48 hours at 2-10°C
Transport of samples may affect sample viability, i.e. FBC results will degenerate if exposed to high temperatures, such as prolonged transportation in a hot car in summer.
This test can be added on to a previous request as long as there is sufficient sample remaining and the sample is less than 24 hours old.
Turnaround Times
Clinical emergency: 30 mins
Other urgent sample: 60 mins
Routine: within 2 hours
Reference Ranges
If references ranges are required for paediatric patients please contact the laboratory for these.
Parameter Patient Reference Range Units Haemoglobin Adult Male 130 - 180 g/L Adult Female 115 - 165 g/L Red Cell Count Adult Male 4.50 - 6.50 x10^12/L Adult Female 3.80 - 5.80 x10^12/L Haematocrit Adult Male 0.40 - 0.54 L/L Adult Female 0.37 - 0.47 L/L Mean Cell Volume Adult 80 - 100 fL Mean Cell Haemoglobin Adult 27 - 32 pg White Cell Count Adult 3.6 - 11.0 x10^9/L Neutrophils Adult 1.8 - 7.5 x10^9/L Lymphocytes Adult 1.0 - 4.0 x10^9/L Monocytes Adult 0.2 - 0.8 x10^9/L Eosinophils Adult 0.1 - 0.4 x10^9/L Basophils Adult 0.02 - 0.10 x10^9/L Platelet Count Adult 140 - 400 x10^9/L
Posted by:
Super Admin
Posted on: #iteachmsu
Department of Haematology
Department of Haematology
Notes
Full blood counts are pe...
Notes
Full blood counts are pe...
Posted by:
Thursday, Oct 12, 2023
Posted on: #iteachmsu
PEDAGOGICAL DESIGN
Facilitating Independent Group Projects
The group project is a much-dreaded component of undergraduate courses, doubly so if students are expected to create their own project from scratch. However, instructors consistently return to the independent group project as an exercise that, if done properly, stimulates student inquiry and cooperation. In this post, I reflect on my experiences facilitating student-led group projects in a biology course and relate these experiences to the commonalities of independent group work across disciplines. I outline four common issues related to independent group projects, then provide the rationale for managing each issue to maximize learning outcomes.
Issue #1: Students Don’t See the Value of Independent Projects
With several classes, part-time jobs, extracurricular activities, and a social life to manage, we can imagine why undergraduates may prefer working on a prescribed project rather than one they design themselves. Independent projects require a lot of brainpower and effort, and we are all likely inclined to gravitate toward projects in which we can work on each step in a straightforward manner. Much of the work that students will encounter outside the classroom, however, requires flexibility and creativity. Using inquiry is essential to translate knowledge into new situations, and independent projects are a great opportunity to practice inquiry.
Tips
Emphasize the real-world skills that students gain. This can be particularly valuable for students who aren’t necessarily interested in the subject matter but can see the benefits they gain in other areas, such as problem solving and managing a team.
Explain how each component of the independent project emulates a real practice in the discipline. This communicates to your students that you are putting them through this experience to help them develop their competencies, not to waste their time.
Treat every pitfall as a lesson, not as an opportunity to point out deficiencies. If something goes wrong, help the students figure out a way to move forward. Then, ask the students what they learned from the experience (e.g., how to better communicate, the value of a contingency plan, time management) and how they might strategize differently if confronted with a similar situation.
Issue #2: Designing and Conducting Independent Projects is Overwhelming
Often, the end product of an independent project seems like an unattainable goal. The concept of an independent project can provide freedom, but the lack of structure can leave students feeling lost and unsure of their path. They key for instructors is to provide structure (e.g., schedules, formatting guidelines) without stifling opportunities for students to be creative and take charge of their own learning.
Tips
Break down the project into manageable goals. Create a guide for students that details out the specific steps that lead to the end product, which includes due dates for smaller components of the project. This will help students feel competent as they achieve each small task and to better manage their time.
Provide iterative feedback. If the only evaluation students receive on their work is their final project grade, they don’t have the opportunity to improve and learn along the way. Checking in with students as they reach each small goal allows both students and instructor to keep track of progress and to make adjustments if a group has gotten off-course.
Take time in class to praise students for their progress. Students may have trouble perceiving their accomplishments, so bringing them up will help to increase student confidence moving forward with the project.
Help groups work through challenges in a structured manner. Ask groups to bring up challenges they have encountered lately, and run a brainstorming session with the entire class to overcome these challenges. Often, other groups will have encountered similar challenges, so working through them together helps students feel more competent and build a sense of community among classmates.
Issue #3: Group Members do not Contribute Equally
A common issue in group projects is that some students don’t have the time or interest to fully participate. This puts an undue burden on the other group members, who must take on a larger role in the project than intended. Instructors can minimize the incentive to “slack off” and create strategies for teams to manage uncooperative group members.
Tips
Have students create a team contract. Provide students with a general template for a group contract with space to detail procedures for written communication among teammates, goals for the project, and consequences for group members who don’t pull their weight. All students should contribute to the creation of the contract and sign it. If an issue arises at any point during the project, the group has a clear path forward to correct the issue.
Build in opportunities for every member to contribute. The threat of being held individually accountable is often enough motivation for students to pull their weight. Take time in class to consult with each group individually or run brainstorming sessions with the entire class, asking individual students to share their experience or discuss project results.
Issue #4: Group Members Have Disparate Goals
Group projects can be frustrating if students clash with teammates due to differing interests or goals. While it’s impossible to remove all disagreement among group members, creating a positive collaborative atmosphere can help students discuss and pursue their goals in a supportive manner.
Tips
Form groups based on mutual interests. Ask students to sit in different sections of the classroom based on potential project topics, then organize the students into groups based on their “interest zone.” An added bonus to this approach is that student groups will automatically have something in common, which can help them form social bonds and increase the enjoyment of working together.
Make time at the start of the project for students to discuss goals. Talking about how the project might relate to their goals for the course, their undergraduate education, and/or their career helps students understand the motivations of their teammates. When group members understand each other’s motivations, they can adjust their expectations and support the achievement of a variety of goals.
While your students may not enjoy the long hours, issues with teammates, and frustrations that accompany the independent group project, they may come to appreciate the lessons learned from their experiences. An example of working through a road block on their project could become a scenario they describe in a job interview. Dealing with an uncooperative group member could inform their approach to team management in their career. Engaging in inquiry could become the foundation for a student’s decision to pursue graduate school. Keep these outcomes in mind, and make every effort to put a positive spin on student progress.
Further Reading
Guide: “What are Best Practices for Designing Group Projects?” from Carnegie Mellon University. https://www.cmu.edu/teaching/designteach/design/instructionalstrategies/groupprojects/design.html
Guide: “Group Work: Using Cooperative Learning Groups Effectively” from Vanderbilt University. https://cft.vanderbilt.edu/guides-sub-pages/setting-up-and-facilitating-group-work-using-cooperative-learning-groups-effectively/
Guide: “Successful Group Projects” from University of Leicester. https://www2.le.ac.uk/offices/ld/resources/study/group-projects
Article: Creating Positive Group Project Experiences by Chapman and van Auken. http://journals.sagepub.com/doi/abs/10.1177/0273475301232005
Issue #1: Students Don’t See the Value of Independent Projects
With several classes, part-time jobs, extracurricular activities, and a social life to manage, we can imagine why undergraduates may prefer working on a prescribed project rather than one they design themselves. Independent projects require a lot of brainpower and effort, and we are all likely inclined to gravitate toward projects in which we can work on each step in a straightforward manner. Much of the work that students will encounter outside the classroom, however, requires flexibility and creativity. Using inquiry is essential to translate knowledge into new situations, and independent projects are a great opportunity to practice inquiry.
Tips
Emphasize the real-world skills that students gain. This can be particularly valuable for students who aren’t necessarily interested in the subject matter but can see the benefits they gain in other areas, such as problem solving and managing a team.
Explain how each component of the independent project emulates a real practice in the discipline. This communicates to your students that you are putting them through this experience to help them develop their competencies, not to waste their time.
Treat every pitfall as a lesson, not as an opportunity to point out deficiencies. If something goes wrong, help the students figure out a way to move forward. Then, ask the students what they learned from the experience (e.g., how to better communicate, the value of a contingency plan, time management) and how they might strategize differently if confronted with a similar situation.
Issue #2: Designing and Conducting Independent Projects is Overwhelming
Often, the end product of an independent project seems like an unattainable goal. The concept of an independent project can provide freedom, but the lack of structure can leave students feeling lost and unsure of their path. They key for instructors is to provide structure (e.g., schedules, formatting guidelines) without stifling opportunities for students to be creative and take charge of their own learning.
Tips
Break down the project into manageable goals. Create a guide for students that details out the specific steps that lead to the end product, which includes due dates for smaller components of the project. This will help students feel competent as they achieve each small task and to better manage their time.
Provide iterative feedback. If the only evaluation students receive on their work is their final project grade, they don’t have the opportunity to improve and learn along the way. Checking in with students as they reach each small goal allows both students and instructor to keep track of progress and to make adjustments if a group has gotten off-course.
Take time in class to praise students for their progress. Students may have trouble perceiving their accomplishments, so bringing them up will help to increase student confidence moving forward with the project.
Help groups work through challenges in a structured manner. Ask groups to bring up challenges they have encountered lately, and run a brainstorming session with the entire class to overcome these challenges. Often, other groups will have encountered similar challenges, so working through them together helps students feel more competent and build a sense of community among classmates.
Issue #3: Group Members do not Contribute Equally
A common issue in group projects is that some students don’t have the time or interest to fully participate. This puts an undue burden on the other group members, who must take on a larger role in the project than intended. Instructors can minimize the incentive to “slack off” and create strategies for teams to manage uncooperative group members.
Tips
Have students create a team contract. Provide students with a general template for a group contract with space to detail procedures for written communication among teammates, goals for the project, and consequences for group members who don’t pull their weight. All students should contribute to the creation of the contract and sign it. If an issue arises at any point during the project, the group has a clear path forward to correct the issue.
Build in opportunities for every member to contribute. The threat of being held individually accountable is often enough motivation for students to pull their weight. Take time in class to consult with each group individually or run brainstorming sessions with the entire class, asking individual students to share their experience or discuss project results.
Issue #4: Group Members Have Disparate Goals
Group projects can be frustrating if students clash with teammates due to differing interests or goals. While it’s impossible to remove all disagreement among group members, creating a positive collaborative atmosphere can help students discuss and pursue their goals in a supportive manner.
Tips
Form groups based on mutual interests. Ask students to sit in different sections of the classroom based on potential project topics, then organize the students into groups based on their “interest zone.” An added bonus to this approach is that student groups will automatically have something in common, which can help them form social bonds and increase the enjoyment of working together.
Make time at the start of the project for students to discuss goals. Talking about how the project might relate to their goals for the course, their undergraduate education, and/or their career helps students understand the motivations of their teammates. When group members understand each other’s motivations, they can adjust their expectations and support the achievement of a variety of goals.
While your students may not enjoy the long hours, issues with teammates, and frustrations that accompany the independent group project, they may come to appreciate the lessons learned from their experiences. An example of working through a road block on their project could become a scenario they describe in a job interview. Dealing with an uncooperative group member could inform their approach to team management in their career. Engaging in inquiry could become the foundation for a student’s decision to pursue graduate school. Keep these outcomes in mind, and make every effort to put a positive spin on student progress.
Further Reading
Guide: “What are Best Practices for Designing Group Projects?” from Carnegie Mellon University. https://www.cmu.edu/teaching/designteach/design/instructionalstrategies/groupprojects/design.html
Guide: “Group Work: Using Cooperative Learning Groups Effectively” from Vanderbilt University. https://cft.vanderbilt.edu/guides-sub-pages/setting-up-and-facilitating-group-work-using-cooperative-learning-groups-effectively/
Guide: “Successful Group Projects” from University of Leicester. https://www2.le.ac.uk/offices/ld/resources/study/group-projects
Article: Creating Positive Group Project Experiences by Chapman and van Auken. http://journals.sagepub.com/doi/abs/10.1177/0273475301232005
Posted by:
Chathuri Super admin..
Posted on: #iteachmsu
Facilitating Independent Group Projects
The group project is a much-dreaded component of undergraduate cour...
Posted by:
PEDAGOGICAL DESIGN
Monday, Aug 6, 2018
Posted on: #iteachmsu
NAVIGATING CONTEXT
A Case for More Testing: The Benefits of Frequent, Low-Stakes Assessments
What if I told you about this magical teaching practice that, done even once, produces large improvements in student final exam scores[1], helps narrow the grade gap between poorly prepped and highly prepped first year college students[2], and might even result in more positive course reviews[3],[4]? What if I also told you this magical teaching practice is something you already know how to do? What if I told you, the secret to increasing your students’ success and overall satisfaction is……more TESTS!?
Okay…well to be fair, it’s a little more nuanced than that. While adding just one test to a class does indeed improve final exam scores, it turns out that more frequent, graded exercises in general improve learning outcomes for students [2],[5]. Even better – if these exercises are low stakes, they can improve learning outcomes without increasing student anxiety [4],[6].
We often view testing as an unpleasant but necessary way to assess student performance. It may be time for us to instead view testing as a useful teaching tool and to implement an assessment system that maximizes the potential learning benefits. In this post I will discuss the important known benefits of frequent, low stakes assessments as well as some practical tips for how to maximize these benefits without adding undue stress to your life or the lives of your students.
Benefit #1: “Thinking about thinking”
Testing can improve a student’s metacognition, or their ability to “think about thinking.” A good metacognitive thinker understands how their thought processes work and can pay attention to and change these processes [7]. A student with strong metacognitive skills can therefore more successfully monitor, evaluate, and improve their learning compared to students lacking these skills. Unfortunately, many students struggle with metacognition and must contend with “illusions of mastery” (or thinking they understand a subject better than they actually do). Self-testing is a good way to prevent illusions of mastery, but many students do not incorporate self-testing into their studying, instead electing more passive modes of exam preparation such as rereading texts[8]. Incorporating more testing into the curriculum forces students into the position of making mistakes and receiving feedback, allowing them to frequently measure their learning in relation to expectations and adjust accordingly. Again, note that providing feedback is an essential part of this process.
Benefit #2: Practice Remembering
Testing can improve a student’s long term memory of information presented in class by forcing students to recall what they’ve learned through a cognitive process called active retrieval. Active retrieval strengthens neural pathways important for retrieving memories, allowing these memories to be more easily accessed in the future.
While any sort of retrieval practice is useful, it is most beneficial when it is effortful, spaced, and interleaved. An example of effortful retrieval practice includes testing which forces students to provide the answers (i.e. Short answer and fill in the blank questions as opposed to multiple choice). More effortful retrieval also occurs with spaced and interleaved practice.
Spaced practice is testing that occurs after enough time has elapsed for some (but not complete) forgetting to occur (i.e. Present the information and then wait a couple months, days, or even just until the end of class to test students on it). Interleaved practice incorporates different but related topics and problem types, as opposed to having students practice and master one type at a time (e.g. cumulative testing where you mix problems from different units together). Interleaved practice can help students learn to focus on the underlying principles of problems and to discriminate between problem types, leading to more complex mental models and a deeper understanding of the relationships between ideas[6].
How to Implement More Assessments (Without Losing Your Mind)
So, all you have to do now is come up with a ton of quiz and test questions and free up a bunch of class time for assessments! Don’t forget you also need to grade all of these! After all, feedback is an important part of the process, and frequent (even low stakes) grading has the added benefits of enhancing student motivation, attentiveness, and attendance.I know what you busy teachers (ie. all of you) out there are thinking….“Your ”magical” teaching practice is starting to sound like a hugely effective pain in my butt.”
Don’t give up on me now though! There are some fairly simple ways to add more assessments to your curriculum. Furthermore, you should be able to do this sans student rebellion because these assessments are low-stakes. Frequent, low-stake assessments as opposed to infrequent, high-stakes assessments actually decrease student anxiety overall because no single test is a make it or break it event. In fact, several teachers have reported a large increase in positive student evaluations after restructuring their classes in this way[3],[4],[6]!
Below I lay out some tips for getting the most out of shifting your assessment practices while maintaining both your own and your students’ sanity:
1) Know that “effortful” testing is not always necessary
While effortful testing is best for retrieval practice, even basic, easily graded recognition tests such multiple choice questions still offer benefits, such as helping students remember basic (but important!) information[6],[9].
2) Create different assessment questions
You can also make assessments more effortful by creating questions that engage higher cognitive processes. Now you can sit back, relax, and indulge in one of my personal favorite pastimes (watching student brains explode) without the stressful grading!
3) Make use of educational technologies to ease your grading
For instance, clicker tests are a quick way to test students and allow you to provide feedback for the class all at once.
4) Make assessments into games
If your students need a morale boost, make a quiz into a trivia game and give winning groups candy. Some good old competition and Pavlovian conditioning may make students reassess their view of testing.
5) Assess participation
Doing something as simple as a participation grade will still provide students with incentive without overburdening them or yourself. For instance, this type of grading would work in conjunction with #3.
6) Keep graded assessments predictable
Making assessments predictable as opposed to utilizing pop quizzes helps students feel at ease.6 Furthermore, if they students KNOW an assessment is coming, they are more likely to study and pay attention.
7) Find ways to revisit old material in your assessments
Making assessments cumulative is an effective way to space out your review of material and has the added benefit of making problems interleaved and effortful, all of which maximize retrieval practice[6].
8) Have students reflect on mistakes
You can help students develop metacognitive skills by giving them opportunities to reflect upon and correct their mistakes on assessments. For instance, have students take a quiz and then discuss their answers/thinking with their classmates before receiving feedback. You can also give students opportunities to create keys to short answer questions and grade their own and several (anonymous) classmates’ answers. This will allow them to think through what makes an answer complete and effective.
9) Break large assessments into small ones
Instead of creating new assessments, break up large ones into multiple, lower-stakes assessments. For example, consider replacing big tests with several quizzes. Consider scaffolding large projects such as independent research projects and term papers. Ask for outlines, lists of references, graphs, etc. along the course of the semester before the final project is due. This might cause more work for you in the short term but can help prevent complete disasters at the end of the semester, which can be time consuming.
10) Utilize short daily or weekly quizzes
If you don’t want to adjust a big project/test or lose class time by adding time-consuming assessments, consider adding short daily or weekly quizzes. These grades can add up to equal one test grade. One could consider dropping the lowest score(s) but allowing no make ups to reduce logistical issues.
These are only a few of the many strategies one can use to transition to a frequent, low-stakes assessment system. What are your experiences with low stakes assessments? Have you made use of any which seem particularly effective in enhancing student learning?
Related Reading:
Much of the information about the benefits of testing is from:
Brown, P.C., Roediger III, H.L., McDaniel, M.A. (2014). Make it Stick: The Science of Successful Learning. Cambridge, MA: The Belknap Press of Harvard University Press.
Okay…well to be fair, it’s a little more nuanced than that. While adding just one test to a class does indeed improve final exam scores, it turns out that more frequent, graded exercises in general improve learning outcomes for students [2],[5]. Even better – if these exercises are low stakes, they can improve learning outcomes without increasing student anxiety [4],[6].
We often view testing as an unpleasant but necessary way to assess student performance. It may be time for us to instead view testing as a useful teaching tool and to implement an assessment system that maximizes the potential learning benefits. In this post I will discuss the important known benefits of frequent, low stakes assessments as well as some practical tips for how to maximize these benefits without adding undue stress to your life or the lives of your students.
Benefit #1: “Thinking about thinking”
Testing can improve a student’s metacognition, or their ability to “think about thinking.” A good metacognitive thinker understands how their thought processes work and can pay attention to and change these processes [7]. A student with strong metacognitive skills can therefore more successfully monitor, evaluate, and improve their learning compared to students lacking these skills. Unfortunately, many students struggle with metacognition and must contend with “illusions of mastery” (or thinking they understand a subject better than they actually do). Self-testing is a good way to prevent illusions of mastery, but many students do not incorporate self-testing into their studying, instead electing more passive modes of exam preparation such as rereading texts[8]. Incorporating more testing into the curriculum forces students into the position of making mistakes and receiving feedback, allowing them to frequently measure their learning in relation to expectations and adjust accordingly. Again, note that providing feedback is an essential part of this process.
Benefit #2: Practice Remembering
Testing can improve a student’s long term memory of information presented in class by forcing students to recall what they’ve learned through a cognitive process called active retrieval. Active retrieval strengthens neural pathways important for retrieving memories, allowing these memories to be more easily accessed in the future.
While any sort of retrieval practice is useful, it is most beneficial when it is effortful, spaced, and interleaved. An example of effortful retrieval practice includes testing which forces students to provide the answers (i.e. Short answer and fill in the blank questions as opposed to multiple choice). More effortful retrieval also occurs with spaced and interleaved practice.
Spaced practice is testing that occurs after enough time has elapsed for some (but not complete) forgetting to occur (i.e. Present the information and then wait a couple months, days, or even just until the end of class to test students on it). Interleaved practice incorporates different but related topics and problem types, as opposed to having students practice and master one type at a time (e.g. cumulative testing where you mix problems from different units together). Interleaved practice can help students learn to focus on the underlying principles of problems and to discriminate between problem types, leading to more complex mental models and a deeper understanding of the relationships between ideas[6].
How to Implement More Assessments (Without Losing Your Mind)
So, all you have to do now is come up with a ton of quiz and test questions and free up a bunch of class time for assessments! Don’t forget you also need to grade all of these! After all, feedback is an important part of the process, and frequent (even low stakes) grading has the added benefits of enhancing student motivation, attentiveness, and attendance.I know what you busy teachers (ie. all of you) out there are thinking….“Your ”magical” teaching practice is starting to sound like a hugely effective pain in my butt.”
Don’t give up on me now though! There are some fairly simple ways to add more assessments to your curriculum. Furthermore, you should be able to do this sans student rebellion because these assessments are low-stakes. Frequent, low-stake assessments as opposed to infrequent, high-stakes assessments actually decrease student anxiety overall because no single test is a make it or break it event. In fact, several teachers have reported a large increase in positive student evaluations after restructuring their classes in this way[3],[4],[6]!
Below I lay out some tips for getting the most out of shifting your assessment practices while maintaining both your own and your students’ sanity:
1) Know that “effortful” testing is not always necessary
While effortful testing is best for retrieval practice, even basic, easily graded recognition tests such multiple choice questions still offer benefits, such as helping students remember basic (but important!) information[6],[9].
2) Create different assessment questions
You can also make assessments more effortful by creating questions that engage higher cognitive processes. Now you can sit back, relax, and indulge in one of my personal favorite pastimes (watching student brains explode) without the stressful grading!
3) Make use of educational technologies to ease your grading
For instance, clicker tests are a quick way to test students and allow you to provide feedback for the class all at once.
4) Make assessments into games
If your students need a morale boost, make a quiz into a trivia game and give winning groups candy. Some good old competition and Pavlovian conditioning may make students reassess their view of testing.
5) Assess participation
Doing something as simple as a participation grade will still provide students with incentive without overburdening them or yourself. For instance, this type of grading would work in conjunction with #3.
6) Keep graded assessments predictable
Making assessments predictable as opposed to utilizing pop quizzes helps students feel at ease.6 Furthermore, if they students KNOW an assessment is coming, they are more likely to study and pay attention.
7) Find ways to revisit old material in your assessments
Making assessments cumulative is an effective way to space out your review of material and has the added benefit of making problems interleaved and effortful, all of which maximize retrieval practice[6].
8) Have students reflect on mistakes
You can help students develop metacognitive skills by giving them opportunities to reflect upon and correct their mistakes on assessments. For instance, have students take a quiz and then discuss their answers/thinking with their classmates before receiving feedback. You can also give students opportunities to create keys to short answer questions and grade their own and several (anonymous) classmates’ answers. This will allow them to think through what makes an answer complete and effective.
9) Break large assessments into small ones
Instead of creating new assessments, break up large ones into multiple, lower-stakes assessments. For example, consider replacing big tests with several quizzes. Consider scaffolding large projects such as independent research projects and term papers. Ask for outlines, lists of references, graphs, etc. along the course of the semester before the final project is due. This might cause more work for you in the short term but can help prevent complete disasters at the end of the semester, which can be time consuming.
10) Utilize short daily or weekly quizzes
If you don’t want to adjust a big project/test or lose class time by adding time-consuming assessments, consider adding short daily or weekly quizzes. These grades can add up to equal one test grade. One could consider dropping the lowest score(s) but allowing no make ups to reduce logistical issues.
These are only a few of the many strategies one can use to transition to a frequent, low-stakes assessment system. What are your experiences with low stakes assessments? Have you made use of any which seem particularly effective in enhancing student learning?
Related Reading:
Much of the information about the benefits of testing is from:
Brown, P.C., Roediger III, H.L., McDaniel, M.A. (2014). Make it Stick: The Science of Successful Learning. Cambridge, MA: The Belknap Press of Harvard University Press.
Posted by:
Chathuri Super admin..
Posted on: #iteachmsu
A Case for More Testing: The Benefits of Frequent, Low-Stakes Assessments
What if I told you about this magical teaching practice that, done ...
Posted by:
NAVIGATING CONTEXT
Monday, Aug 6, 2018