We found 28 results that contain "tag"
Posted on: #iteachmsu
ASSESSING LEARNING
How Can We Successfully Land a Rover on Mars?
The classic egg drop experiment gets reinvented as a driving question for physics students to explore a real-world problem.
By Suzie Boss
July 26, 2018
When a teenager climbs atop his desk and drops an object to the floor, teacher Johnny Devine doesn’t object. Far from it—he’s as eager as the rest of the class to see what happens next.
In a split second, the student and his teammates get positive feedback for the object they have cobbled together by hand. A small parachute made of plastic and held in place with duct tape opens as planned, slowing the descent and easing the cargo to a safe landing. Students exchange quick smiles of satisfaction as they record data. Their mission isn’t accomplished yet, but today’s test run brings them one step closer to success as aspiring aerospace engineers.
To boost engagement in challenging science content, Devine has his students tackle the same problems that professional scientists and engineers wrestle with. “Right away, they know that what they are learning can be applied to an actual career,” Devine says. “Students are motivated because it’s a real task.”
From the start of Mission to Mars, students know that expert engineers from local aerospace companies will evaluate their final working models of Mars landing devices. Their models will have to reflect the students’ best thinking about how to get a payload from orbit onto the surface of the Red Planet without damaging the goods inside. While real Mars landings involve multimillion-dollar equipment, students’ launchers will carry four fragile eggs.
THE ROAD MAP
Although the project gives students considerable freedom, it unfolds through a series of carefully designed stages, each focused on specific learning goals. Having a detailed project plan “creates a roadmap,” Devine explains, “for the students to really track their progress and see how what they’re learning connects back to the guiding question: How can we successfully land a rover on Mars?”
©George Lucas Educational Foundation
Before introducing technical content, Devine wants students to visualize what space scientists actually do. By watching videos of engineers who design entry, descent, and landing systems for spacecraft, students start getting into character for the work ahead.
Devine introduces a series of hands-on activities as the project unfolds to help students put physics concepts into action. They learn about air resistance, for instance, by experimenting with parachute designs and wrestling with a real challenge: How will they slow their landers to a reasonable speed for entry into the thin Martian atmosphere?
To apply the concept of change in momentum, students design airbag systems to go on the bottom of their landers—a location aptly called the crumple zone. They experiment with bubble wrap and other materials as potential cushioners for their cargo.
As the grand finale approaches, students keep using what they learn to test, analyze, and modify their designs. “You have to repeat the equations with different trials,” one student explains. “Being able to use that math over and over again helps it stick.”
Much of the hands-on learning in this PBL classroom “might look like a traditional physics lab,” Devine acknowledges, with students learning concepts through inquiry investigations. What’s different is the teacher’s ongoing reminder “to make sure students stay in character” as systems engineers. Each lab investigation relates back to their driving question and creates more opportunities for Devine to ask probing questions and formatively assess his students’ understanding. “We do a lot of framing in and framing out after each of those lessons so students have the chance to reflect and connect it back,” the teacher explains.
EXPERT CONVERSATIONS
When it is finally time for students to launch their precious cargo off a second-story landing, engineers from local aerospace companies are standing by to assess results. How many eggs in each lander will survive the fall?
Even more important than the test data are the discussions between experts and students. One engineer, for instance, asks to see earlier versions of a team’s design and hear about the tests that led to modifications. A student named Elizabeth perks up when she hears engineers using the same technical vocabulary that she and her classmates have learned. “It was kind of a connection—this is actually a thing that goes on,” she says.
“They had really deep, meaningful conversations so that students could practice communicating their justification for their designs,” Devine says. Hearing them use academic language and apply physics concepts tells the teacher that students deeply understand the science behind their designs. “At the end of the day, that’s what I’m most concerned about,” he says.
https://youtu.be/bKc2shFqLao
By Suzie Boss
July 26, 2018
When a teenager climbs atop his desk and drops an object to the floor, teacher Johnny Devine doesn’t object. Far from it—he’s as eager as the rest of the class to see what happens next.
In a split second, the student and his teammates get positive feedback for the object they have cobbled together by hand. A small parachute made of plastic and held in place with duct tape opens as planned, slowing the descent and easing the cargo to a safe landing. Students exchange quick smiles of satisfaction as they record data. Their mission isn’t accomplished yet, but today’s test run brings them one step closer to success as aspiring aerospace engineers.
To boost engagement in challenging science content, Devine has his students tackle the same problems that professional scientists and engineers wrestle with. “Right away, they know that what they are learning can be applied to an actual career,” Devine says. “Students are motivated because it’s a real task.”
From the start of Mission to Mars, students know that expert engineers from local aerospace companies will evaluate their final working models of Mars landing devices. Their models will have to reflect the students’ best thinking about how to get a payload from orbit onto the surface of the Red Planet without damaging the goods inside. While real Mars landings involve multimillion-dollar equipment, students’ launchers will carry four fragile eggs.
THE ROAD MAP
Although the project gives students considerable freedom, it unfolds through a series of carefully designed stages, each focused on specific learning goals. Having a detailed project plan “creates a roadmap,” Devine explains, “for the students to really track their progress and see how what they’re learning connects back to the guiding question: How can we successfully land a rover on Mars?”
©George Lucas Educational Foundation
Before introducing technical content, Devine wants students to visualize what space scientists actually do. By watching videos of engineers who design entry, descent, and landing systems for spacecraft, students start getting into character for the work ahead.
Devine introduces a series of hands-on activities as the project unfolds to help students put physics concepts into action. They learn about air resistance, for instance, by experimenting with parachute designs and wrestling with a real challenge: How will they slow their landers to a reasonable speed for entry into the thin Martian atmosphere?
To apply the concept of change in momentum, students design airbag systems to go on the bottom of their landers—a location aptly called the crumple zone. They experiment with bubble wrap and other materials as potential cushioners for their cargo.
As the grand finale approaches, students keep using what they learn to test, analyze, and modify their designs. “You have to repeat the equations with different trials,” one student explains. “Being able to use that math over and over again helps it stick.”
Much of the hands-on learning in this PBL classroom “might look like a traditional physics lab,” Devine acknowledges, with students learning concepts through inquiry investigations. What’s different is the teacher’s ongoing reminder “to make sure students stay in character” as systems engineers. Each lab investigation relates back to their driving question and creates more opportunities for Devine to ask probing questions and formatively assess his students’ understanding. “We do a lot of framing in and framing out after each of those lessons so students have the chance to reflect and connect it back,” the teacher explains.
EXPERT CONVERSATIONS
When it is finally time for students to launch their precious cargo off a second-story landing, engineers from local aerospace companies are standing by to assess results. How many eggs in each lander will survive the fall?
Even more important than the test data are the discussions between experts and students. One engineer, for instance, asks to see earlier versions of a team’s design and hear about the tests that led to modifications. A student named Elizabeth perks up when she hears engineers using the same technical vocabulary that she and her classmates have learned. “It was kind of a connection—this is actually a thing that goes on,” she says.
“They had really deep, meaningful conversations so that students could practice communicating their justification for their designs,” Devine says. Hearing them use academic language and apply physics concepts tells the teacher that students deeply understand the science behind their designs. “At the end of the day, that’s what I’m most concerned about,” he says.
https://youtu.be/bKc2shFqLao
Posted by:
Chathuri Super admin..
Posted on: #iteachmsu
How Can We Successfully Land a Rover on Mars?
The classic egg drop experiment gets reinvented as a driving questi...
Posted by:
ASSESSING LEARNING
Tuesday, Aug 14, 2018
Posted on: #iteachmsu
PEDAGOGICAL DESIGN
technology Development
https://www.youtube.com/watch?v=vr8pNgjI9Ig
new technology
In technology development significant advances are as often the result of a series of evolutionary steps as they are of breakthroughs. This is illustrated by the examples of the steam engine and the computer. Breakthroughs, such as the transistor, are relatively rare, and are often the result of the introduction of new knowledge coming from a quite different area. Technology development is often difficult to predict because of its complexity; practical considerations may far outweigh apparent scientific advantages, and cultural factors enter in at many levels. In a large technological organization problems exist in bringing scientific knowledge to bear on development, but much can be done to obviate these difficulties.
new technology
In technology development significant advances are as often the result of a series of evolutionary steps as they are of breakthroughs. This is illustrated by the examples of the steam engine and the computer. Breakthroughs, such as the transistor, are relatively rare, and are often the result of the introduction of new knowledge coming from a quite different area. Technology development is often difficult to predict because of its complexity; practical considerations may far outweigh apparent scientific advantages, and cultural factors enter in at many levels. In a large technological organization problems exist in bringing scientific knowledge to bear on development, but much can be done to obviate these difficulties.
Authored by:
Chathuri

Posted on: #iteachmsu

technology Development
https://www.youtube.com/watch?v=vr8pNgjI9Ig
new technology&n...
new technology&n...
Authored by:
PEDAGOGICAL DESIGN
Tuesday, Oct 15, 2019
Posted on: #iteachmsu
ASSESSING LEARNING
Which Foods You Should Eat To Increase Hemoglobin Count?
Hemoglobin is an iron-rich protein in red blood cells (RBCs). The normal hemoglobin range for men is 13.5 to 17.5 gm/dL and 12 to 15.5 gm/dL for women. It is of utmost importance to maintain hemoglobin concentration.
What you need to know:
What functions does hemoglobin perform in our bodies?
What causes low hemoglobin?
Symptoms of low hemoglobin
What are the foods that can increase hemoglobin level?
Tips to increase your hemoglobin levels
What functions does hemoglobin perform in our bodies?
Hemoglobin is vital for carrying oxygen from the lungs to tissues and organs. It also transports carbon dioxide from the tissues back to the lungs.
What causes low hemoglobin?
Some common causes of low hemoglobin are:
Substantial blood loss
Deficiency in iron, vitamin B, and folate
Kidney disease
Hypothyroidism
Thalassemia
Lung diseases
Excessive smoking
Any type of blood loss can cause anemia, including blood loss from surgery, heavy menstrual periods, and bleeding in the gastrointestinal tract.
Symptoms of low hemoglobin
You can detect extremely low hemoglobin levels in your system in a few ways. They include
A fast or irregular heartbeat
Fatigue
Frequent or unexplained bruising
Shortness of breath
Liver and kidney disease
Pale skin and gums
Muscle weakness
Reoccurring headaches
Dizziness
Poor appetite
Anemia in severe cases
Elevated hemoglobin levels are associated with dehydration, heart failure, and chronic lung disease. In some conditions, the bone marrow may not produce enough RBCs, leading to cancers like leukemia, lymphoma, or tumors that spread from other parts of the body into the bone marrow.
What are the foods that can improve your hemoglobin levels?
It is essential to boost your food intake to raise your hemoglobin levels. Here are some foods to increase hemoglobin levels:
Iron-rich foods: Consume iron-rich foods like fish, meat, eggs, soy products, broccoli, green leafy vegetables that include spinach, fenugreek leaves, cauliflower, green peas, cabbage, green beans, nuts and seeds, and peanut butter, to increase your hemoglobin levels.
Vitamin A: It is pertinent to consume vitamin A foods to increase hemoglobin as they absorb more iron. Vitamin A and beta-carotene can help you there. Vitamin A is found in animal food sources, such as fish and liver. Beta-carotene is found in red, yellow, and orange fruits and vegetables.
Folate: Folate is a type of Vitamin B that plays an essential part in hemoglobin production. A shortage of folate can prevent the red blood cells from maturing, leading to anemia. Some good sources of folate include beef, rice, black-eyed peas, kidney beans, lettuce, and peanuts.
Foods rich in vitamin C: A combination of iron and vitamin C can prove to be beneficial. The latter is used for better absorption of iron. Foods rich in vitamin C include oranges, lemon, strawberries, papaya, bell peppers, broccoli, and tomatoes.
Fruits: It is also perfect to have fruits like beetroot, apple, watermelon, papaya, oranges, litchis, kiwis, strawberries, grapefruit, banana, and peach, which can boost hemoglobin levels. Plus, dry fruits, like dates, can increase the number of erythrocytes, thereby increasing hemoglobin levels. They contain iron, vitamin C, vitamin B complex, and folic acid, which helps in the formation of red blood cells. Raisins are also a rich source of iron and copper necessary to form red blood cells.
Avoid iron blockers: Foods that block your body’s ability to absorb iron, such as coffee, tea, alcohol, and aerated drinks, should be avoided.
Tips to increase your hemoglobin levels
Here are some tips to keep in mind to increase your hemoglobin levels:
Switch to brown rice: As a superfood, brown rice can help prevent various diseases related to cholesterol and the gastrointestinal system. It is rich in iron, containing 0.52 milligrams of iron for every 100 grams.
Enjoy dark chocolate: With over 80% of cocoa, dark chocolate naturally improves hemoglobin levels. Plus, it is loaded with minerals, nutrients and antioxidants.
Drink nettle tea: The spice nettle has also proven to be a good source of iron and vitamin B and C. They can also play a part in increasing hemoglobin levels.
Exercise: Take up moderate to high-intensity exercise to help your body produce more hemoglobin to meet the oxygen demands of your body.
Stay tuned to the Activ Living Community. Keep up to date with the latest health tips and trends through expert videos, podcasts, articles, and much more in nutrition, fitness, mindfulness, and lifestyle conditions like Asthma, Blood Pressure, Cholesterol, and Diabetes.
You may also be interested in the following blogs:
10 Vegetarian Foods That Are Rich In Iron
Want to Add Iron Rich Foods to Add in Your Diet? Check Out These Iron Rich Foods.
What you need to know:
What functions does hemoglobin perform in our bodies?
What causes low hemoglobin?
Symptoms of low hemoglobin
What are the foods that can increase hemoglobin level?
Tips to increase your hemoglobin levels
What functions does hemoglobin perform in our bodies?
Hemoglobin is vital for carrying oxygen from the lungs to tissues and organs. It also transports carbon dioxide from the tissues back to the lungs.
What causes low hemoglobin?
Some common causes of low hemoglobin are:
Substantial blood loss
Deficiency in iron, vitamin B, and folate
Kidney disease
Hypothyroidism
Thalassemia
Lung diseases
Excessive smoking
Any type of blood loss can cause anemia, including blood loss from surgery, heavy menstrual periods, and bleeding in the gastrointestinal tract.
Symptoms of low hemoglobin
You can detect extremely low hemoglobin levels in your system in a few ways. They include
A fast or irregular heartbeat
Fatigue
Frequent or unexplained bruising
Shortness of breath
Liver and kidney disease
Pale skin and gums
Muscle weakness
Reoccurring headaches
Dizziness
Poor appetite
Anemia in severe cases
Elevated hemoglobin levels are associated with dehydration, heart failure, and chronic lung disease. In some conditions, the bone marrow may not produce enough RBCs, leading to cancers like leukemia, lymphoma, or tumors that spread from other parts of the body into the bone marrow.
What are the foods that can improve your hemoglobin levels?
It is essential to boost your food intake to raise your hemoglobin levels. Here are some foods to increase hemoglobin levels:
Iron-rich foods: Consume iron-rich foods like fish, meat, eggs, soy products, broccoli, green leafy vegetables that include spinach, fenugreek leaves, cauliflower, green peas, cabbage, green beans, nuts and seeds, and peanut butter, to increase your hemoglobin levels.
Vitamin A: It is pertinent to consume vitamin A foods to increase hemoglobin as they absorb more iron. Vitamin A and beta-carotene can help you there. Vitamin A is found in animal food sources, such as fish and liver. Beta-carotene is found in red, yellow, and orange fruits and vegetables.
Folate: Folate is a type of Vitamin B that plays an essential part in hemoglobin production. A shortage of folate can prevent the red blood cells from maturing, leading to anemia. Some good sources of folate include beef, rice, black-eyed peas, kidney beans, lettuce, and peanuts.
Foods rich in vitamin C: A combination of iron and vitamin C can prove to be beneficial. The latter is used for better absorption of iron. Foods rich in vitamin C include oranges, lemon, strawberries, papaya, bell peppers, broccoli, and tomatoes.
Fruits: It is also perfect to have fruits like beetroot, apple, watermelon, papaya, oranges, litchis, kiwis, strawberries, grapefruit, banana, and peach, which can boost hemoglobin levels. Plus, dry fruits, like dates, can increase the number of erythrocytes, thereby increasing hemoglobin levels. They contain iron, vitamin C, vitamin B complex, and folic acid, which helps in the formation of red blood cells. Raisins are also a rich source of iron and copper necessary to form red blood cells.
Avoid iron blockers: Foods that block your body’s ability to absorb iron, such as coffee, tea, alcohol, and aerated drinks, should be avoided.
Tips to increase your hemoglobin levels
Here are some tips to keep in mind to increase your hemoglobin levels:
Switch to brown rice: As a superfood, brown rice can help prevent various diseases related to cholesterol and the gastrointestinal system. It is rich in iron, containing 0.52 milligrams of iron for every 100 grams.
Enjoy dark chocolate: With over 80% of cocoa, dark chocolate naturally improves hemoglobin levels. Plus, it is loaded with minerals, nutrients and antioxidants.
Drink nettle tea: The spice nettle has also proven to be a good source of iron and vitamin B and C. They can also play a part in increasing hemoglobin levels.
Exercise: Take up moderate to high-intensity exercise to help your body produce more hemoglobin to meet the oxygen demands of your body.
Stay tuned to the Activ Living Community. Keep up to date with the latest health tips and trends through expert videos, podcasts, articles, and much more in nutrition, fitness, mindfulness, and lifestyle conditions like Asthma, Blood Pressure, Cholesterol, and Diabetes.
You may also be interested in the following blogs:
10 Vegetarian Foods That Are Rich In Iron
Want to Add Iron Rich Foods to Add in Your Diet? Check Out These Iron Rich Foods.
Authored by:
Vijaya

Posted on: #iteachmsu

Which Foods You Should Eat To Increase Hemoglobin Count?
Hemoglobin is an iron-rich protein in red blood cells (RBCs)....
Authored by:
ASSESSING LEARNING
Friday, Sep 29, 2023
Posted on: #iteachmsu
DISCIPLINARY CONTENT
Article : internationally recognized certificate serves as proof of performance, strengthening both
https://www.bankrate.com/investing/stock-market-basics-for-beginners/Software testing is governed by seven principles:Absence of errors fallacy: Even if the software is 99% bug-free, it is unusable if it does not conform to the user's requirements. Software needs to be bug-free 99% of the time, and it must also meet all customer requirements.Testing shows the presence of errors: Testing can verify the presence of defects in software, but it cannot guarantee that the software is defect-free. Testing can minimize the number of defects, but it can't remove them all.Exhaustive testing is not possible: The software cannot be tested exhaustively, which means all possible test cases cannot be covered. Testing can only be done with a select few test cases, and it's assumed that the software will produce the right output in all cases. Taking the software through every test case will cost more, take more effort, etc., which makes it impractical.Defect clustering: The majority of defects are typically found in a small number of modules in a project. According to the Pareto Principle, 80% of software defects arise from 20% of modules.Pesticide Paradox: It is impossible to find new bugs by re-running the same test cases over and over again. Thus, updating or adding new test cases is necessary in order to find new bugs.Early testing: Early testing is crucial to finding the defect in the software. In the early stages of SDLC, defects will be detected more easily and at a lower cost. Software testing should start at the initial phase of software development, which is the requirement analysis phase.Testing is context-dependent: The testing approach varies depending on the software development context. Software needs to be tested differently depending on its type. For instance, an ed-tech site is tested differently than an Android app.
Posted by:
Super Admin

Posted on: #iteachmsu

Article : internationally recognized certificate serves as proof of performance, strengthening both
https://www.bankrate.com/investing/stock-market-basics-for-beginner...
Posted by:
DISCIPLINARY CONTENT
Thursday, Jul 11, 2024