We found 30 results that contain "trial 3"

Posted on: #iteachmsu
Thursday, Dec 3, 2020
The relationship between science and technology
Science, technology and innovation each represent a successively larger category of activities which are highly interdependent but distinct. Science contributes to technology in at least six ways: (1) new knowledge which serves as a direct source of ideas for new technological possibilities; (2) source of tools and techniques for more efficient engineering design and a knowledge base for evaluation of feasibility of designs; (3) research instrumentation, laboratory techniques and analytical methods used in research that eventually find their way into design or industrial practices, often through intermediate disciplines; (4) practice of research as a source for development and assimilation of new human skills and capabilities eventually useful for technology; (5) creation of a knowledge base that becomes increasingly important in the assessment of technology in terms of its wider social and environmental impacts; (6) knowledge base that enables more efficient strategies of applied research, development, and refinement of new technologies.
Posted by: Greg Thomsan
post image
Posted on: #iteachmsu
Monday, Mar 11, 2024
A class is a user-defined blueprint or prototype from which objects are created. -- Edited
A class is a user-defined blueprint or prototype from which objects are created. It represents the set of properties or methods that are common to all objects of one type. Using classes, you can create multiple objects with the same behavior instead of writing their code multiple times. This includes classes for objects occurring more than once in your code. https://www.javatpoint.com/microprocessor-introduction In general, class declarations can include these components in order: 

Modifiers: A class can be public or have default access (Refer to this for details).
Class name: The class name should begin with the initial letter capitalized by convention.
Superclass (if any): The name of the class’s parent (superclass), if any, preceded by the keyword extends. A class can only extend (subclass) one parent.
Interfaces (if any): A comma-separated list of interfaces implemented by the class, if any, preceded by the keyword implements. A class can implement more than one interface.
Body: The class body is surrounded by braces, { }.

An object is a basic unit of Object-Oriented Programming that represents real-life entities. A typical Java program creates many objects, which as you know, interact by invoking methods. The objects are what perform your code, they are the part of your code visible to the viewer/user. An object mainly consists of: 

State: It is represented by the attributes of an object. It also reflects the properties of an object.
Behavior: It is represented by the methods of an object. It also reflects the response of an object to other objects.
Identity: It is a unique name given to an object that enables it to interact with other objects.
Method: A method is a collection of statements that perform some specific task and return the result to the caller. A method can perform some specific task without returning anything. Methods allow us to reuse the code without retyping it, which is why they are considered time savers. In Java, every method must be part of some class, which is different from languages like C, C++, and Python. 
Authored by: Vijayalaxmi Mhetre
post image
Posted on: #iteachmsu
Monday, Aug 6, 2018
A Case for More Testing: The Benefits of Frequent, Low-Stakes Assessments
What if I told you about this magical teaching practice that, done even once, produces large improvements in student final exam scores[1], helps narrow the grade gap between poorly prepped and highly prepped first year college students[2], and might even result in more positive course reviews[3],[4]? What if I also told you this magical teaching practice is something you already know how to do? What if I told you, the secret to increasing your students’ success and  overall satisfaction is……more TESTS!?
Okay…well to be fair, it’s a little more nuanced than that. While adding just one test to a class does indeed improve final exam scores, it turns out that more frequent, graded exercises in general improve learning outcomes for students [2],[5]. Even better – if these exercises are low stakes, they can improve learning outcomes without increasing student anxiety [4],[6].
We often view testing as an unpleasant but necessary way to assess student performance. It may be time for us to instead view testing as a useful teaching tool and to implement an assessment system that maximizes the potential learning benefits. In this post I will discuss the important known benefits of frequent, low stakes assessments as well as some practical tips for how to maximize these benefits without adding undue stress to your life or the lives of your students.

Benefit #1: “Thinking about thinking”
Testing can improve a student’s metacognition, or their ability to “think about thinking.” A good metacognitive thinker understands how their thought processes work and can pay attention to and change these processes [7]. A student with strong metacognitive skills can therefore more successfully monitor, evaluate, and improve their learning compared to students lacking these skills. Unfortunately, many students struggle with metacognition and must contend with “illusions of mastery” (or thinking they understand a subject better than they actually do).  Self-testing is a good way to prevent illusions of mastery, but many students do not incorporate self-testing into their studying, instead electing more passive modes of exam preparation such as rereading texts[8]. Incorporating more testing into the curriculum forces students into the position of making mistakes and receiving feedback, allowing them to frequently measure their learning in relation to expectations and adjust accordingly. Again, note that providing feedback is an essential part of this process.

Benefit #2: Practice Remembering
Testing can improve a student’s long term memory of information presented in class by forcing students to recall what they’ve learned through a cognitive process called active retrieval. Active retrieval strengthens neural pathways important for retrieving memories, allowing these memories to be more easily accessed in the future.
While any sort of retrieval practice is useful, it is most beneficial when it is effortful, spaced, and interleaved.  An example of effortful retrieval practice includes testing which forces students to provide the answers (i.e. Short answer and fill in the blank questions as opposed to multiple choice). More effortful retrieval also occurs with spaced and interleaved practice.
Spaced practice is testing that occurs after enough time has elapsed for some (but not complete) forgetting to occur (i.e. Present the information and then wait a couple months, days, or even just until the end of class to test students on it). Interleaved practice incorporates different but related topics and problem types, as opposed to having students practice and master one type at a time (e.g. cumulative testing where you mix problems from different units together). Interleaved practice can help students learn to focus on the underlying principles of problems and to discriminate between problem types, leading to more complex mental models and a deeper understanding of the relationships between ideas[6].

How to Implement More Assessments (Without Losing Your Mind)
So, all you have to do now is come up with a ton of quiz and test questions and free up a bunch of class time for assessments! Don’t forget you also need to grade all of these! After all, feedback is an important part of the process, and frequent (even low stakes) grading has the added benefits of enhancing student motivation, attentiveness, and attendance.I know what you busy teachers (ie. all of you) out there are thinking….“Your ”magical” teaching practice is starting to sound like a hugely effective pain in my butt.”
Don’t give up on me now though! There are some fairly simple ways to add more assessments to your curriculum. Furthermore, you should be able to do this sans student rebellion because these assessments are low-stakes. Frequent, low-stake assessments as opposed to infrequent, high-stakes assessments actually decrease student anxiety overall because no single test is a make it or break it event. In fact, several teachers have reported a large increase in positive student evaluations after restructuring their classes in this way[3],[4],[6]!

Below I lay out some tips for getting the most out of shifting your assessment practices while maintaining both your own and your students’ sanity:

1) Know that “effortful” testing is not always necessary
While effortful testing is best for retrieval practice, even basic, easily graded recognition tests such multiple choice questions still offer benefits, such as helping students remember basic (but important!) information[6],[9].

2) Create different assessment questions
You can also make assessments more effortful by creating questions that engage higher cognitive processes. Now you can sit back, relax, and indulge in one of my personal favorite pastimes (watching student brains explode) without the stressful grading!

3) Make use of educational technologies to ease your grading
For instance, clicker tests are a quick way to test students and allow you to provide feedback for the class all at once.

4) Make assessments into games
If your students need a morale boost, make a quiz into a trivia game and give winning groups candy. Some good old competition and Pavlovian conditioning may make students reassess their view of testing.

5) Assess participation
Doing something as simple as a participation grade will still provide students with incentive without overburdening them or yourself. For instance, this type of grading would work in conjunction with #3.

6) Keep graded assessments predictable
Making assessments predictable as opposed to utilizing pop quizzes helps students feel at ease.6 Furthermore, if they students KNOW an assessment is coming, they are more likely to study and pay attention.

7) Find ways to revisit old material in your assessments
Making assessments cumulative is an effective way to space out your review of material and has the added benefit of making problems interleaved and effortful, all of which maximize retrieval practice[6].

8) Have students reflect on mistakes
You can help students develop metacognitive skills by giving them opportunities to reflect upon and correct their mistakes on assessments. For instance, have students take a quiz and then discuss their answers/thinking with their classmates before receiving feedback. You can also give students opportunities to create keys to short answer questions and grade their own and several (anonymous) classmates’ answers. This will allow them to think through what makes an answer complete and effective.

9) Break large assessments into small ones
Instead of creating new assessments, break up large ones into multiple, lower-stakes assessments. For example, consider replacing big tests with several quizzes. Consider scaffolding large projects such as independent research projects and term papers. Ask for outlines, lists of references, graphs, etc. along the course of the semester before the final project is due. This might cause more work for you in the short term but can help prevent complete disasters at the end of the semester, which can be time consuming.

10) Utilize short daily or weekly quizzes
If you don’t want to adjust a big project/test or lose class time by adding time-consuming assessments, consider adding short daily or weekly quizzes. These grades can add up to equal one test grade. One could consider dropping the lowest score(s) but allowing no make ups to reduce logistical issues.
These are only a few of the many strategies one can use to transition to a frequent, low-stakes assessment system. What are your experiences with low stakes assessments? Have you made use of any which seem particularly effective in enhancing student learning?

Related Reading:
Much of the information about the benefits of testing is from:
Brown, P.C., Roediger III, H.L., McDaniel, M.A. (2014). Make it Stick: The Science of Successful Learning. Cambridge, MA: The Belknap Press of Harvard University Press.
Posted by: Chathuri Super admin..
post image
Posted on: #iteachmsu
Tuesday, Aug 14, 2018
How Can We Successfully Land a Rover on Mars?
The classic egg drop experiment gets reinvented as a driving question for physics students to explore a real-world problem.

By Suzie Boss
July 26, 2018
When a teenager climbs atop his desk and drops an object to the floor, teacher Johnny Devine doesn’t object. Far from it—he’s as eager as the rest of the class to see what happens next.

In a split second, the student and his teammates get positive feedback for the object they have cobbled together by hand. A small parachute made of plastic and held in place with duct tape opens as planned, slowing the descent and easing the cargo to a safe landing. Students exchange quick smiles of satisfaction as they record data. Their mission isn’t accomplished yet, but today’s test run brings them one step closer to success as aspiring aerospace engineers.



To boost engagement in challenging science content, Devine has his students tackle the same problems that professional scientists and engineers wrestle with. “Right away, they know that what they are learning can be applied to an actual career,” Devine says. “Students are motivated because it’s a real task.”

From the start of Mission to Mars, students know that expert engineers from local aerospace companies will evaluate their final working models of Mars landing devices. Their models will have to reflect the students’ best thinking about how to get a payload from orbit onto the surface of the Red Planet without damaging the goods inside. While real Mars landings involve multimillion-dollar equipment, students’ launchers will carry four fragile eggs.

THE ROAD MAP

Although the project gives students considerable freedom, it unfolds through a series of carefully designed stages, each focused on specific learning goals. Having a detailed project plan “creates a roadmap,” Devine explains, “for the students to really track their progress and see how what they’re learning connects back to the guiding question: How can we successfully land a rover on Mars?”

©George Lucas Educational Foundation

Before introducing technical content, Devine wants students to visualize what space scientists actually do. By watching videos of engineers who design entry, descent, and landing systems for spacecraft, students start getting into character for the work ahead.

Devine introduces a series of hands-on activities as the project unfolds to help students put physics concepts into action. They learn about air resistance, for instance, by experimenting with parachute designs and wrestling with a real challenge: How will they slow their landers to a reasonable speed for entry into the thin Martian atmosphere?

To apply the concept of change in momentum, students design airbag systems to go on the bottom of their landers—a location aptly called the crumple zone. They experiment with bubble wrap and other materials as potential cushioners for their cargo.

As the grand finale approaches, students keep using what they learn to test, analyze, and modify their designs. “You have to repeat the equations with different trials,” one student explains. “Being able to use that math over and over again helps it stick.”

Much of the hands-on learning in this PBL classroom “might look like a traditional physics lab,” Devine acknowledges, with students learning concepts through inquiry investigations. What’s different is the teacher’s ongoing reminder “to make sure students stay in character” as systems engineers. Each lab investigation relates back to their driving question and creates more opportunities for Devine to ask probing questions and formatively assess his students’ understanding. “We do a lot of framing in and framing out after each of those lessons so students have the chance to reflect and connect it back,” the teacher explains.

EXPERT CONVERSATIONS

When it is finally time for students to launch their precious cargo off a second-story landing, engineers from local aerospace companies are standing by to assess results. How many eggs in each lander will survive the fall?

Even more important than the test data are the discussions between experts and students. One engineer, for instance, asks to see earlier versions of a team’s design and hear about the tests that led to modifications. A student named Elizabeth perks up when she hears engineers using the same technical vocabulary that she and her classmates have learned. “It was kind of a connection—this is actually a thing that goes on,” she says.

“They had really deep, meaningful conversations so that students could practice communicating their justification for their designs,” Devine says. Hearing them use academic language and apply physics concepts tells the teacher that students deeply understand the science behind their designs. “At the end of the day, that’s what I’m most concerned about,” he says.

https://youtu.be/bKc2shFqLao


 
Posted by: Chathuri Super admin..
post image
Posted on: Nutrition -- Edited...
Monday, Jul 28, 2025
By Shravya: What is nutrition and why is nutrition important? public child grp , public article
At the most basic level, nutrition is about eating a regular, balanced diet. Good nutrition helps fuel your body. The foods you eat supply the nutrients your body needs to maintain your brain, muscle, bone, nerves, skin, blood circulation, and immune system. Proper nutrition also helps protect you from illness and disease such as heart disease, diabetes, cancer, and osteoporosis.
There are two major classes of nutrients in food: macronutrients and micronutrients. Macronutrients are carbohydrates, protein, and fat. They supply energy (in the form of calories) and serve as the building blocks for muscles and tissues.
In comparison, micronutrients are individual vitamins and minerals. They are divided into four categories: water-soluble vitamins, fat-soluble vitamins, microminerals, and trace minerals.
 
While most foods in plant-based diets offer important health benefits, certain ones stand out. These "superfoods" pack the biggest nutritional punch. People should try to eat some of these healthy foods every day or as often as possible. They include the following:

Berries. High in fiber, berries are naturally sweet, and their rich colors mean they are high in antioxidants and disease-fighting nutrients.
Fatty fish. Fatty fish can be a good source of protein and omega-3 fatty acids, which help prevent heart disease. Those with the highest omega-3 content are salmon, mackerel, trout, anchovies, and sardines.
Leafy greens. Dark, leafy greens are a good source of vitamin A, vitamin C, and calcium, as well as several phytochemicals (chemicals made by plants) that fight inflammation and protect cells from damage.
Nuts. Hazelnuts, walnuts, almonds, and pecans are good plant protein sources. They also contain monounsaturated fats, which may be a factor in reducing the risk of heart disease.
Olive oil. Olive oil is a good source of vitamin E, polyphenols, and monounsaturated fatty acids, all of which help reduce the risk of heart disease.
Whole grains. A good source of soluble and insoluble fiber, whole grains also contain several B vitamins and minerals. They have been shown to lower cholesterol and protect against heart disease and diabetes.
Yogurt. A good source of calcium and protein, yogurt contains live cultures called probiotics. These "good bacteria" can protect the body from other harmful bacteria.
Cruciferous vegetables. These include broccoli, Brussels sprouts, cabbage, cauliflower, collard greens, kale, kohlrabi, mustard greens, radishes, and turnips. They are an excellent source of fiber, vitamins, and phytochemicals, which may help prevent some types of cancer.
Legumes. This broad category includes kidney, black, red, and garbanzo beans, soybeans, and peas. Legumes are an excellent source of fiber, folate, and protein; studies show they can help reduce the risk of heart disease.

 
Authored by: Vija
post image
Posted on: #iteachmsu
Monday, Sep 14, 2020
Global burden of dengue
The incidence of dengue has grown dramatically around the world in recent decades. A vast majority of cases are asymptomatic or mild and self-managed, and hence the actual numbers of dengue cases are under-reported. Many cases are also misdiagnosed as other febrile illnesses [1].
One modelling estimate indicates 390 million dengue virus infections per year (95% credible interval 284–528 million), of which 96 million (67–136 million) manifest clinically (with any severity of disease) [2]. Another study on the prevalence of dengue estimates that 3.9 billion people are at risk of infection with dengue viruses. Despite a risk of infection existing in 129 countries [3], 70% of the actual burden is in Asia [2].
The number of dengue cases reported to WHO increased over 8 fold over the last two decades, from 505,430 cases in 2000, to over 2.4 million in 2010, and 4.2 million in 2019. Reported deaths between the year 2000 and 2015 increased from 960 to 4032.



This alarming increase in case numbers is partly explained by a change in national practices to record and report dengue to the Ministries of Health, and to the WHO. But it also represents government recognition of the burden, and therefore the pertinence to report dengue disease burden. Therefore, although the full global burden of the disease is uncertain, this observed growth only brings us closer to a more accurate estimate of the full extent of the burden.
Authored by: WHO Organization
post image
Posted on: #iteachmsu
post image
Global burden of dengue
The incidence of dengue has grown dramatically around the world in ...
Authored by:
Monday, Sep 14, 2020
Posted on: #iteachmsu
Tuesday, Jan 5, 2021
An Effective Management Information System
Effective Management Information System:
Essential characteristics of an effective management information system are 1. MIS is management-oriented 2. MIS is developed under the direction of management 3. MIS is an integrated system 4. common data flow 5. MIS is based upon the future needs of the business 6. MIS is composed of sub-systems 7. MIS requires flexibility 8. distributed data processing and 9. MIS is mostly computerized.
Management Information System is established in an organization to provide relevant information to the managers to operate effectively and efficiently.
1. MIS is management-oriented:
The design of MIS starts with an appraisal of the information needs of the management. The system is usually designed from top to bottom. However, this does not mean that MIS fulfills the information needs of top management only.
 
It only implies that the information needs of the top management will serve as a basis for the assessment of the information needs of lower-level managers. In every case, the system should be designed to cater to the information needs of all levels of management.
2. MIS is developed under the direction of management:
Because of the management orientation of MIS, it is imperative that the management of an organization actively directs the development and establishment of the MIS in an organization.
It is rare to find an MIS where the manager himself, or a high-level representative of his department, is not spending a good deal of time in the system design.
 
Authored by: Rupali
post image
Posted on: What are the 12 Agile Principles?
Tuesday, Jul 29, 2025
The Agile Alliance defines 12 lightness principles for those who need to attain agility: Our highes
Edited: The Agile Alliance defines 12 lightness principles for those who need to attain agility:

Our highest priority is to satisfy the client through early and continuous delivery of valuable computer software.
Welcome dynamic necessities, even late in development. Agile Processes harness modification for the customer’s competitive advantage.
Deliver operating computer software often, from a pair of weeks to a couple of months, with a preference to the shorter timescale.
Business individuals and developers should work along daily throughout the project.
The build comes around actuated people. offer them the setting and support they have, and trust them to urge the task done.
the foremost economical and effective methodology of conveyancing info to and among a development team is face-to-face speech.
Working with computer software is the primary life of progress.
Agile processes promote property development. The sponsors, developers, and users will be able to maintain a relentless pace indefinitely.
Continuous attention to technical excellence and smart style enhances nimbleness.
Simplicity—the art of maximizing the number of work not done—is essential.
the most effective architectures, necessities, and styles emerge from self–organizing groups.
At regular intervals, the team reflects on a way to become simpler, then tunes and adjusts its behavior consequently.
Posted by: Chathuri Super admin..
post image